Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi J Ophthalmol ; 37(4): 313-320, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155679

RESUMO

PURPOSE: The purpose of this study was to develop a visually guided swim assay (VGSA) for measuring vision in mouse retinal disease models comparable to the multi-luminance mobility test (MLMT) utilized in human clinical trials. METHODS: Three mouse retinal disease models were studied: Bardet-Biedl syndrome type 1 (Bbs1M390R/M390R), n = 5; Bardet-Biedl syndrome type 10 (Bbs10-/-), n = 11; and X linked retinoschisis (retinoschisin knockout; Rs1-KO), n = 5. Controls were normally-sighted mice, n = 10. Eyeless Pax6Sey-Dey mice, n = 4, were used to determine the performance of animals without vision in VGSA. RESULTS: Eyeless Pax6Sey-Dey mice had a VGSA time-to-platform (TTP) 7X longer than normally-sighted controls (P < 0.0001). Controls demonstrated no difference in their TTP in both lighting conditions; the same was true for Pax6Sey-Dey. At 4-6 M, Rs1-KO and Bbs10-/- had longer TTP in the dark than controls (P = 0.0156 and P = 1.23 × 10-8, respectively). At 9-11 M, both BBS models had longer TTP than controls in light and dark with times similar to Pax6Sey-Dey (P < 0.0001), demonstrating progressive vision loss in BBS models, but not in controls nor in Rs1-KO. At 1 M, Bbs10-/- ERG light-adapted (cone) amplitudes were nonrecordable, resulting in a floor effect. VGSA did not reach a floor until 9-11 M. ERG combined rod/cone b-wave amplitudes were nonrecordable in all three mutant groups at 9-11 M, but VGSA still showed differences in visual function. ERG values correlate non-linearly with VGSA, and VGSA measured the continual decline of vision. CONCLUSION: ERG is no longer a useful endpoint once the nonrecordable level is reached. VGSA differentiates between different levels of vision, different ages, and different disease models even after ERG is nonrecordable, similar to the MLMT in humans.

2.
Front Mol Neurosci ; 16: 1155955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181655

RESUMO

The voltage-gated calcium channel, Cav1.4 is localized to photoreceptor ribbon synapses and functions both in molecular organization of the synapse and in regulating release of synaptic vesicles. Mutations in Cav1.4 subunits typically present as either incomplete congenital stationary night blindness or a progressive cone-rod dystrophy in humans. We developed a cone-rich mammalian model system to further study how different Cav1.4 mutations affect cones. RPE65 R91W KI; Nrl KO "Conefull" mice were crossed to Cav1.4 α1F or α2δ4 KO mice to generate the "Conefull:α1F KO" and "Conefull:α2δ4 KO" lines. Animals were assessed using a visually guided water maze, electroretinogram (ERG), optical coherence tomography (OCT), and histology. Mice of both sexes and up to six-months of age were used. Conefull: α1F KO mice could not navigate the visually guided water maze, had no b-wave in the ERG, and the developing all-cone outer nuclear layer reorganized into rosettes at the time of eye opening with degeneration progressing to 30% loss by 2-months of age. In comparison, the Conefull: α2δ4 KO mice successfully navigated the visually guided water maze, had a reduced amplitude b-wave ERG, and the development of the all-cone outer nuclear layer appeared normal although progressive degeneration with 10% loss by 2-months of age was observed. In summary, new disease models for studying congenital synaptic diseases due to loss of Cav1.4 function have been created.

3.
Hum Mol Genet ; 31(7): 1035-1050, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34652420

RESUMO

Heteromeric Kv2.1/Kv8.2 channels are voltage-gated potassium channels localized to the photoreceptor inner segment. They carry IKx, which is largely responsible for setting the photoreceptor resting membrane potential. Mutations in Kv8.2 result in childhood-onset cone dystrophy with supernormal rod response (CDSRR). We generated a Kv8.2 knockout (KO) mouse and examined retinal signaling and photoreceptor degeneration to gain deeper insight into the complex phenotypes of this disease. Using electroretinograms, we show that there were delayed or reduced signaling from rods depending on the intensity of the light stimulus, consistent with reduced capacity for light-evoked changes in membrane potential. The delayed response was not seen ex vivo where extracellular potassium levels were controlled by the perfusion buffer, so we propose the in vivo alteration is influenced by genotype-associated ionic imbalance. We observed mild retinal degeneration. Signaling from cones was reduced but there was no loss of cone density. Loss of Kv8.2 altered responses to flickering light with responses attenuated at high frequencies and altered in shape at low frequencies. The Kv8.2 KO line on an all-cone retina background had reduced cone-driven ERG b wave amplitudes and underwent degeneration. Altogether, we provide insight into how a deficit in the dark current affects the health and function of photoreceptors.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana , Degeneração Retiniana , Doenças Retinianas , Animais , Eletrorretinografia , Camundongos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/genética
4.
Front Cell Neurosci ; 14: 595523, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250719

RESUMO

Vision, hearing, smell, taste, and touch are the tools used to perceive and navigate the world. They enable us to obtain essential resources such as food and highly desired resources such as mates. Thanks to the investments in biomedical research the molecular unpinning's of human sensation are rivaled only by our knowledge of sensation in the laboratory mouse. Humans rely heavily on vision whereas mice use smell as their dominant sense. Both modalities have many features in common, starting with signal detection by highly specialized primary sensory neurons-rod and cone photoreceptors (PR) for vision, and olfactory sensory neurons (OSN) for the smell. In this chapter, we provide an overview of how these two types of primary sensory neurons operate while highlighting the similarities and distinctions.

5.
Invest Ophthalmol Vis Sci ; 60(8): 3150-3161, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31335952

RESUMO

Purpose: Cav1.4 is a voltage-gated calcium channel clustered at the presynaptic active zones of photoreceptors. Cav1.4 functions in communication by mediating the Ca2+ influx that triggers neurotransmitter release. It also aids in development since rod ribbon synapses do not form in Cav1.4 knock-out mice. Here we used a rescue strategy to investigate the ability of Cav1.4 to trigger synaptogenesis in both immature and mature mouse rods. Methods: In vivo electroporation was used to transiently express Cav α1F or tamoxifen-inducible Cav α1F in a subset of Cav1.4 knock-out mouse rods. Synaptogenesis was assayed using morphologic markers and a vision-guided water maze. Results: We found that introduction of Cav α1F to knock-out terminals rescued synaptic development as indicated by PSD-95 expression and elongated ribbons. When expression of Cav α1F was induced in mature animals, we again found restoration of PSD-95 and elongated ribbons. However, the induced expression of Cav α1F led to diffuse distribution of Cav α1F in the terminal instead of being clustered beneath the ribbon. Approximately a quarter of treated animals passed the water maze test, suggesting the rescue of retinal signaling in these mice. Conclusions: These data confirm that Cav α1F expression is necessary for rod synaptic terminal development and demonstrate that rescue is robust even in adult animals with late stages of synaptic disease. The degree of rod synaptic plasticity seen here should be sufficient to support future vision-restoring treatments such as gene or cell replacement that will require photoreceptor synaptic rewiring.


Assuntos
Canais de Cálcio Tipo L/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transmissão Sináptica/genética , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo L/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo
6.
J Neurosci ; 38(27): 6145-6160, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29875267

RESUMO

α2δ-4 is an auxiliary subunit of voltage-gated Cav1.4 L-type channels that regulate the development and mature exocytotic function of the photoreceptor ribbon synapse. In humans, mutations in the CACNA2D4 gene encoding α2δ-4 cause heterogeneous forms of vision impairment in humans, the underlying pathogenic mechanisms of which remain unclear. To investigate the retinal function of α2δ-4, we used genome editing to generate an α2δ-4 knock-out (α2δ-4 KO) mouse. In male and female α2δ-4 KO mice, rod spherules lack ribbons and other synaptic hallmarks early in development. Although the molecular organization of cone synapses is less affected than rod synapses, horizontal and cone bipolar processes extend abnormally in the outer nuclear layer in α2δ-4 KO retina. In reconstructions of α2δ-4 KO cone pedicles by serial block face scanning electron microscopy, ribbons appear normal, except that less than one-third show the expected triadic organization of processes at ribbon sites. The severity of the synaptic defects in α2δ-4 KO mice correlates with a progressive loss of Cav1.4 channels, first in terminals of rods and later cones. Despite the absence of b-waves in electroretinograms, visually guided behavior is evident in α2δ-4 KO mice and better under photopic than scotopic conditions. We conclude that α2δ-4 plays an essential role in maintaining the structural and functional integrity of rod and cone synapses, the disruption of which may contribute to visual impairment in humans with CACNA2D4 mutations.SIGNIFICANCE STATEMENT In the retina, visual information is first communicated by the synapse formed between photoreceptors and second-order neurons. The mechanisms that regulate the structural integrity of this synapse are poorly understood. Here we demonstrate a role for α2δ-4, a subunit of voltage-gated Ca2+ channels, in organizing the structure and function of photoreceptor synapses. We find that presynaptic Ca2+ channels are progressively lost and that rod and cone synapses are disrupted in mice that lack α2δ-4. Our results suggest that alterations in presynaptic Ca2+ signaling and photoreceptor synapse structure may contribute to vision impairment in humans with mutations in the CACNA2D4 gene encoding α2δ-4.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/ultraestrutura , Sinapses/metabolismo , Sinapses/ultraestrutura , Animais , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Knockout
7.
Exp Eye Res ; 170: 108-116, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29486162

RESUMO

The 14-3-3 family of proteins has undergone considerable expansion in higher eukaryotes with humans and mice expressing seven isoforms (ß, ε, η, γ, θ, ζ, and σ) from seven distinct genes (YWHAB, YWAHE, YWHAH, YWHAG, YWHAQ, YWHAZ, and SFN). Growing evidence indicates that while highly conserved, these isoforms are not entirely functionally redundant as they exhibit unique tissue expression profiles, subcellular localization, and biochemical functions. A key limitation in our understanding of 14-3-3 biology lies in our limited knowledge of cell-type specific 14-3-3 expression. Here we provide a characterization of 14-3-3 expression in whole retina and isolated rod photoreceptors using reverse-transcriptase digital droplet PCR. We find that all 14-3-3 genes with the exception of SFN are expressed in mouse retina with YWHAQ and YWHAE being the most highly expressed. Rod photoreceptors are enriched in YWHAE (14-3-3 ε). Immunohistochemistry revealed that 14-3-3 ε and 14-3-3 ζ exhibit unique distributions in photoreceptors with 14-3-3 ε restricted to the inner segment and 14-3-3 ζ localized to the outer segment. Our data demonstrates that, in the retina, 14-3-3 isoforms likely serve specific functions as they exhibit unique expression levels and cell-type specificity. As such, future investigations into 14-3-3 function in rod photoreceptors should be centered on 14-3-3 ε and 14-3-3 ζ, depending on the subcellular region of question.


Assuntos
Proteínas 14-3-3/genética , Regulação da Expressão Gênica/fisiologia , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Western Blotting , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Plasmídeos , Isoformas de Proteínas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Traffic ; 16(12): 1239-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26373354

RESUMO

Na(+) /K(+) -ATPase (NKA) participates in setting electrochemical gradients, cardiotonic steroid signaling and cellular adhesion. Distinct isoforms of NKA are found in different tissues and subcellular localization patterns. For example, NKA α1 is widely expressed, NKA α3 is enriched in neurons and NKA α4 is a testes-specific isoform found in sperm flagella. In some tissues, ankyrin, a key component of the membrane cytoskeleton, can regulate the trafficking of NKA. In the retina, NKA and ankyrin-B are expressed in multiple cell types and immunostaining for each is striking in the synaptic layers. Labeling for NKA is also prominent along the inner segment plasma membrane (ISPM) of photoreceptors. NKA co-immunoprecipitates with ankyrin-B, but on a subcellular level colocalization of these two proteins varies dependent on the cell type. We used transgenic Xenopus laevis tadpoles to evaluate the subcellular trafficking of NKA in photoreceptors. GFP-NKA α3 and α1 are localized to the ISPM, but α4 is localized to outer segments (OSs). We identified a VxP motif responsible for the OS targeting by using a series of chimeric and mutant NKA constructs. This motif is similar to previously identified ciliary targeting motifs. Given the structural similarities between OSs and flagella, our findings shed light on the subcellular targeting of this testes-specific NKA isoform.


Assuntos
Anquirinas/metabolismo , Flagelos/enzimologia , Retina/enzimologia , Segmento Interno das Células Fotorreceptoras da Retina/enzimologia , Segmento Externo das Células Fotorreceptoras da Retina/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Motivos de Aminoácidos , Animais , Anquirinas/genética , Bovinos , Membrana Celular/enzimologia , Proteínas de Fluorescência Verde/genética , Humanos , Imunoprecipitação , Técnicas In Vitro , Larva/enzimologia , Camundongos Endogâmicos C57BL , Organismos Geneticamente Modificados , Subunidades Proteicas , Transporte Proteico , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/genética , Especificidade da Espécie , Xenopus laevis/genética
9.
Invest Ophthalmol Vis Sci ; 56(6): 3514-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26030105

RESUMO

PURPOSE: Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels are widely expressed in the retina. In photoreceptors, the hyperpolarization-activated current (Ih) carried by HCN1 is important for shaping the light response. It has been shown in multiple systems that trafficking HCN1 channels to specific compartments is key to their function. The localization of HCN1 in photoreceptors is concentrated in the plasma membrane of the inner segment (IS). The mechanisms controlling this localization are not understood. We previously identified a di-arginine endoplasmic reticulum (ER) retention motif that negatively regulates the surface targeting of HCN1. In this study, we sought to identify a forward trafficking signal that could counter the function of the ER retention signal. METHODS: We studied trafficking of HCN1 and several mutants by imaging their subcellular localization in transgenic X. laevis photoreceptors. Velocity sedimentation was used to assay the assembly state of HCN1 channels. RESULTS: We found the HCN1 N-terminus can redirect a membrane reporter from outer segments (OS) to the plasma membrane of the IS. The sequence necessary for this behavior was mapped to a 20 amino acid region containing a leucine-based ER export motif. The ER export signal is necessary for forward trafficking but not channel oligomerization. Moreover, this ER export signal alone counteracted the di-arginine ER retention signal. CONCLUSIONS: We identified an ER export signal in HCN1 that functions with the ER retention signal to maintain equilibrium of HCN1 between the endomembrane system and the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Imuno-Histoquímica , Modelos Animais , Sinapses/metabolismo , Xenopus laevis
10.
Cell Mol Life Sci ; 72(4): 833-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25142030

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels carry Ih, which contributes to neuronal excitability and signal transmission in the nervous system. Controlling the trafficking of HCN1 is an important aspect of its regulation, yet the details of this process are poorly understood. Here, we investigated how the C-terminus of HCN1 regulates trafficking by testing for its ability to redirect the localization of a non-targeted reporter in transgenic Xenopus laevis photoreceptors. We found that HCN1 contains an ER localization signal and through a series of deletion constructs, identified the responsible di-arginine ER retention signal. This signal is located in the intrinsically disordered region of the C-terminus of HCN1. To test the function of the ER retention signal in intact channels, we expressed wild type and mutant HCN1 in HEK293 cells and found this signal negatively regulates surface expression of HCN1. In summary, we report a new mode of regulating HCN1 trafficking: through the use of a di-arginine ER retention signal that monitors processing of the channel in the early secretory pathway.


Assuntos
Arginina/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados/metabolismo , Arginina/química , Células HEK293 , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Dados de Sequência Molecular , Células Fotorreceptoras/metabolismo , Via Secretória , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...